IRC-Galleria

Tiedot

Luokittelu
Elämänkatsomus ja filosofia
Perustettu
2.6.2025
Tilastot
Käyntejä: 4
Koko
1 jäsen
Poikia: 1 (100 %)
Keski-ikä
37,4 vuotta
Otos: 1 jäsen
Poikien keski-ikä: 37,4 vuotta
Ylläpitäjä
CreepyToilet

Jäsenet (1)

CreepyToilet

Kuvaus

Mandelbrotin joukko eli Mandelbrotin fraktaali on eräs tunnetuimmista fraktaaleista. Joukko on nimetty puolalais-ranskalaisen matemaatikon Benoît Mandelbrotin mukaan, ja se perustuu kompleksilukufunktioon zn+1 = zn2 + c, jossa z ja c ovat kompleksilukuja.

C on vakio ja z:lle annetaan alkuarvoksi z0 = 0, tällöin yhtälöstä saadaan z1 = c ja edelleen z2 = z1 2 + c. Iterointia jatketaan kunnes z:n itseisarvo ylittää arvon 2. Jos c:n itseisarvo on lähellä nollaa, niin z ei milloinkaan saavuta arvoa 2. Tätä vastaa fraktaalin kuvaajan keskellä oleva musta alue. Jos c:n itseisarvo on suuri, esim 2, niin heti ensimmäinen iteraatio saa z:n ylittämän arvon 2. Tätä vastaa kuvan reunoilla olevat tummimmat alueet. Tällä välillä on epämääräisen muotoinen alue, jossa tarvittavien iteraatiokierrosten määrä on vaikeasti ennustettavissa.

[img]http://https://upload.wikimedia.org/wikipedia/commons/thumb/d/dc/Mandelbrot_20210411_007.png/1280px-Mandelbrot_20210411_007.png[/img]

Kuvassa kukin piste vastaa yhtä c:n arvoa ja kyseisen pisteen väri kertoo tarvittujen iterointikierrosten lukumäärän kyseisellä C:n arvolla. Kaikki pisteet, joiden väri on sama, ovat tarvinneet saman määrän iterointeja. Iterointien lukumäärän kasvun myötä väri muuttuu tumman sinisestä sinisen ja vihreän kautta keltaiseen ja edelleen muihin väreihin. Kuvaan muodostuu selvä reuna-alue, jossa värit vaihtuvat nopeasti. Tällä alueella on tyypillistä, että aivan mitättömän pieni c:n muutos vaikuttaa voimakkaasti ja arvaamattomasti tarvittavien iterointien määrän ja sitä kautta pisteen väriin.

https://fi.wikipedia.org/wiki/Mandelbrotin_joukko

Etkö vielä ole jäsen?

Liity ilmaiseksi

Rekisteröityneenä käyttäjänä voisit

Lukea ja kirjoittaa kommentteja, kirjoittaa blogia ja keskustella muiden käyttäjien kanssa lukuisissa yhteisöissä.