Tämä sivu käyttää evästeitä palveluiden toimittamisessa, mainosten personoinnissa ja liikenteen analysoinnissa. Käyttämällä sivustoa hyväksyt evästeiden käytön.
Lisätietoja
Hae
Kirjoita tähän nimi tai nimen osa aloittaaksesi hakemisen.
Hakua tehdessä tapahtui odottamaton virhe. Yritä hetken kuluttua uudestaan!
Hakusi ei tuottanut tuloksia. Ole hyvä ja yritä toisilla hakusanoilla!
A Grand Unified Theory (GUT) is any model in particle physics that merges the electromagnetic, weak, and strong forces (the three gauge interactions of the Standard Model) into a single force at high energies. Although this unified force has not been directly observed, many GUT models theorize its existence. If the unification of these three interactions is possible, it raises the possibility that there was a grand unification epoch in the very early universe in which these three fundamental interactions were not yet distinct.
Experiments have confirmed that at high energy, the electromagnetic interaction and weak interaction unify into a single combined electroweak interaction. GUT models predict that at even higher energy, the strong and electroweak interactions will unify into one electronuclear interaction. This interaction is characterized by one larger gauge symmetry and thus several force carriers, but one unified coupling constant. Unifying gravity with the electronuclear interaction would provide a more comprehensive theory of everything (TOE) rather than a Grand Unified Theory. Thus, GUTs are often seen as an intermediate step towards a TOE.
The novel particles predicted by GUT models are expected to have extremely high masses—around the GUT scale of 1016 GeV/c2 (only three orders of magnitude below the Planck scale of 1019 GeV/c2)—and so are well beyond the reach of any foreseen particle hadron collider experiments. Therefore, the particles predicted by GUT models will be unable to be observed directly, and instead the effects of grand unification might be detected through indirect observations of the following:
•proton decay,
•electric dipole moments of elementary particles, or the properties of neutrinos.
•Some GUTs, such as the Pati–Salam model, predict the existence of magnetic monopoles.
While GUTs might be expected to offer simplicity over the complications present in the Standard Model, realistic models remain complicated because they need to introduce additional fields and interactions, or even additional dimensions of space, in order to reproduce observed fermion masses and mixing angles. This difficulty, in turn, may be related to the existence of family symmetries beyond the conventional GUT models. Due to this and the lack of any observed effect of grand unification so far, there is no generally accepted GUT model.
Models that do not unify the three interactions using one simple group as the gauge symmetry but do so using semisimple groups can exhibit similar properties and are sometimes referred to as Grand Unified Theories as well.