IRC-Galleria

Tiedot

Luokittelu
Elämänkatsomus ja filosofia
Perustettu
1.7.2025
Tilastot
Käyntejä: 1
Koko
1 jäsen
Poikia: 1 (100 %)
Keski-ikä
37,5 vuotta
Otos: 1 jäsen
Poikien keski-ikä: 37,5 vuotta
Ylläpitäjä
CreepyToilet

Jäsenet (1)

CreepyToilet

Kuvaus

Quantum entanglement is the phenomenon where the quantum state of each particle in a group cannot be described independently of the state of the others, even when the particles are separated by a large distance. The topic of quantum entanglement is at the heart of the disparity between classical physics and quantum physics: entanglement is a primary feature of quantum mechanics not present in classical mechanics.

Measurements of physical properties such as position, momentum, spin, and polarization performed on entangled particles can, in some cases, be found to be perfectly correlated. For example, if a pair of entangled particles is generated such that their total spin is known to be zero, and one particle is found to have clockwise spin on a first axis, then the spin of the other particle, measured on the same axis, is found to be anticlockwise. However, this behavior gives rise to seemingly paradoxical effects: any measurement of a particle's properties results in an apparent and irreversible wave function collapse of that particle and changes the original quantum state. With entangled particles, such measurements affect the entangled system as a whole.

Such phenomena were the subject of a 1935 paper by Albert Einstein, Boris Podolsky, and Nathan Rosen, and several papers by Erwin Schrödinger shortly thereafter, describing what came to be known as the EPR paradox. Einstein and others considered such behavior impossible, as it violated the local realism view of causality (Einstein referring to it as "spooky action at a distance") and argued that the accepted formulation of quantum mechanics must therefore be incomplete.

Later, however, the counterintuitive predictions of quantum mechanics were verified in tests where polarization or spin of entangled particles were measured at separate locations, statistically violating Bell's inequality. This established that the correlations produced from quantum entanglement cannot be explained in terms of local hidden variables, i.e., properties contained within the individual particles themselves. However, despite the fact that entanglement can produce statistical correlations between events in widely separated places, it cannot be used for faster-than-light communication.

Quantum entanglement has been demonstrated experimentally with photons, electrons, top quarks, molecules and even small diamonds. The use of quantum entanglement in communication and computation is an active area of research and development.

https://en.wikipedia.org/wiki/Quantum_entanglement

Etkö vielä ole jäsen?

Liity ilmaiseksi

Rekisteröityneenä käyttäjänä voisit

Lukea ja kirjoittaa kommentteja, kirjoittaa blogia ja keskustella muiden käyttäjien kanssa lukuisissa yhteisöissä.